Shaggy Volleypom: Difference between revisions

Jump to navigation Jump to search
Content added Content deleted
imported>Papainmanis
No edit summary
imported>Papainmanis
No edit summary
Line 89: Line 89:
The parachyma experiences very slight disconnection between cells, allowing for extracellular spacing in which air may travel and gas exchange can occur, water in these spaces is generally soaked up by cells to keep them free from blockage and freighted toward vascular fibers for further use by the black flora. Other extracellular labyrinths, unconnected, do, however, allow water to traverse between cells. This allows cells to remain hydrated and is an artifact from various ancestors using guttation and evaporation through their stem and trunk surface to assist in the movement of water up their bodies.
The parachyma experiences very slight disconnection between cells, allowing for extracellular spacing in which air may travel and gas exchange can occur, water in these spaces is generally soaked up by cells to keep them free from blockage and freighted toward vascular fibers for further use by the black flora. Other extracellular labyrinths, unconnected, do, however, allow water to traverse between cells. This allows cells to remain hydrated and is an artifact from various ancestors using guttation and evaporation through their stem and trunk surface to assist in the movement of water up their bodies.


[[File:Shaggy Volleypom - woody twig.jpg|thumb|center|P1. Undifferentiated parachyma, P2. Partially lignified parachyma, P3. Fully lignified parachyma. B1. Undifferentiated PCC, B2. Fibrous PCC, B3. Bark layer]]
[[File:Shaggy Volleypom - woody twig.jpg|thumb|center|P1. Undifferentiated parachyma
P2. Partially lignified parachyma
P3. Fully lignified parachyma. B1. Undifferentiated PCC
B2. Fibrous PCC
B3. Bark layer]]
The edge of the parachyma is ringed with a tissue reminiscent in function to a proto-cork cambium (PCC). At the boundary of the parachyma and proto-cork cambium the latter is broken apart by the growth of the former. Cells of PCC replicate here, always pushing outward from the parachyma. As observation travels further outward along the PCC the tissue becomes more uniform, vertically fibrous, and unbroken, with excepting to strips housing access to the inner air and water labyrinths. Further out still the access to the water labyrinths is severed, at this point the cells are tighter packed, and begin excretion of lignin and suberin into their extracellular matrix, or cell wall, making them more rigid and very waterproof. As these masses of cells are pushed out further by those behind them their layers fracture into macroscopic fibrous chunks that can measure up to 30cm in length. These chunks may curl slightly at their edges due to desiccation, though the cells inside at this point should all be dead and desiccated regardless. At this point it is the surface of the branch or trunk, and what remains is a flaky and fibrous, waterproof, layer that can be called a bark (though more specifically, periderm). This bark as it continues to be grown may end up several centimeters thick in older areas, and non-existent in new tissues where parachyma is directly exposed.
The edge of the parachyma is ringed with a tissue reminiscent in function to a proto-cork cambium (PCC). At the boundary of the parachyma and proto-cork cambium the latter is broken apart by the growth of the former. Cells of PCC replicate here, always pushing outward from the parachyma. As observation travels further outward along the PCC the tissue becomes more uniform, vertically fibrous, and unbroken, with excepting to strips housing access to the inner air and water labyrinths. Further out still the access to the water labyrinths is severed, at this point the cells are tighter packed, and begin excretion of lignin and suberin into their extracellular matrix, or cell wall, making them more rigid and very waterproof. As these masses of cells are pushed out further by those behind them their layers fracture into macroscopic fibrous chunks that can measure up to 30cm in length. These chunks may curl slightly at their edges due to desiccation, though the cells inside at this point should all be dead and desiccated regardless. At this point it is the surface of the branch or trunk, and what remains is a flaky and fibrous, waterproof, layer that can be called a bark (though more specifically, periderm). This bark as it continues to be grown may end up several centimeters thick in older areas, and non-existent in new tissues where parachyma is directly exposed.


Line 96: Line 100:
These deep roots also provide access to a range of otherwise locked away substances, including arsenic. This element when drawn up into the Shaggy Volleypom is not shed or excreted readily like other noxious chemicals found during extraction. Rather it is used in the formation of organic arsenic acids that accumulate in the leaves and new growth of the organism, though not the sporangiums. This substance deters and can even kill foraging herbivores, especially smaller ones with voracious appetites and inability to easily source other foods. As leaves are shed to the forest floor they increase the bioavailability of arsenic in their area, which will be drawn back up into the Shaggy Volleypom, but may also spread into other organisms as contamination.
These deep roots also provide access to a range of otherwise locked away substances, including arsenic. This element when drawn up into the Shaggy Volleypom is not shed or excreted readily like other noxious chemicals found during extraction. Rather it is used in the formation of organic arsenic acids that accumulate in the leaves and new growth of the organism, though not the sporangiums. This substance deters and can even kill foraging herbivores, especially smaller ones with voracious appetites and inability to easily source other foods. As leaves are shed to the forest floor they increase the bioavailability of arsenic in their area, which will be drawn back up into the Shaggy Volleypom, but may also spread into other organisms as contamination.


[[File:Shaggy Volleypom - growing roothair.jpg|thumb|center|simplified cross section of a growing roothair.]]
Reduced to 18% of original (3843 x 1789)
user posted image
simplified cross section of a growing roothair.

The structure and growth among the primary and lateral roots are fairly similar to the trunk and branches, playing a similar role of transporting water and nutrients. However a few differences are that the barrels of the vascular fibers are more elongate, the bark layer is very thin, and there is more storage specialization among their parachyma. The formation of roothair structures is similar to how vascular tissue arises from Volleypom embryonic cell mats. Epidermal cells trigger parachyma just beneath them to form vascular disks, albeit these consist of a single cell rather than a whole bead of tissue. This cell divides, then divides again to form four daughter cells which then begin growing a length of lumen tube that remains to be only four cells in perimeter. This lumen tube pushes through the epidermal layer directly into the surrounding soil where water and dissolved nutrients and salts may diffuse into the space of the tube. At the point of origin the four cells of the tube pinch the tube shut and multiply so this dead end fans open in shape. The cell walls between them fill with suberin, the same waterproof stuff in the Volleypom bark, and force any water or nutrients to actively pass through the cells rather than between. This way there is a checkpoint for anything entering the root where passage can be allowed or denied. Once through this cork water and nutrients is passed through parachyma on into the vascular fibers where it can rapidly travel further up the organism.
The structure and growth among the primary and lateral roots are fairly similar to the trunk and branches, playing a similar role of transporting water and nutrients. However a few differences are that the barrels of the vascular fibers are more elongate, the bark layer is very thin, and there is more storage specialization among their parachyma. The formation of roothair structures is similar to how vascular tissue arises from Volleypom embryonic cell mats. Epidermal cells trigger parachyma just beneath them to form vascular disks, albeit these consist of a single cell rather than a whole bead of tissue. This cell divides, then divides again to form four daughter cells which then begin growing a length of lumen tube that remains to be only four cells in perimeter. This lumen tube pushes through the epidermal layer directly into the surrounding soil where water and dissolved nutrients and salts may diffuse into the space of the tube. At the point of origin the four cells of the tube pinch the tube shut and multiply so this dead end fans open in shape. The cell walls between them fill with suberin, the same waterproof stuff in the Volleypom bark, and force any water or nutrients to actively pass through the cells rather than between. This way there is a checkpoint for anything entering the root where passage can be allowed or denied. Once through this cork water and nutrients is passed through parachyma on into the vascular fibers where it can rapidly travel further up the organism.


[[File:Shaggy Volleypom - germinating megaspore.jpg|thumb|center|Simplified cross section diagram of a germinating megaspore, chronologically top to bottom.]]
Reduced to 18% of original (2807 x 3973)
user posted image
Simplified cross section diagram of a germinating megaspore, chronologically top to bottom.

The germination process of a megaspore differs somewhat from the typical black flora spore, allowed by its size. The inside of a fully mature megaspore is made up of many lobes of tissue, as well as a single massive yolk-like cell with a loose and cushy cell wall. This singular cell is the zygote. Surrounding it is a soft armor of cushion lobes to protect it from jostling or taking damage during falling. In front of it is a single lobe with the purpose of breaking through the germ pore during germination, after which it is absorbed by the growing organism. Behind the zygote are large storage lobes that provide energy and materials to the developing organism before leaving it's shell and during it's initial growth outside. The cushion lobes share this role after completing their main function. Toward the very back is a long lobe that takes on storage as a secondary function as well, the umbilicus lobe. This developed from a string of spore cells through which the parent Volleypom fed the rest of the growing spore tissue and was directly attached to the megasporangium.
The germination process of a megaspore differs somewhat from the typical black flora spore, allowed by its size. The inside of a fully mature megaspore is made up of many lobes of tissue, as well as a single massive yolk-like cell with a loose and cushy cell wall. This singular cell is the zygote. Surrounding it is a soft armor of cushion lobes to protect it from jostling or taking damage during falling. In front of it is a single lobe with the purpose of breaking through the germ pore during germination, after which it is absorbed by the growing organism. Behind the zygote are large storage lobes that provide energy and materials to the developing organism before leaving it's shell and during it's initial growth outside. The cushion lobes share this role after completing their main function. Toward the very back is a long lobe that takes on storage as a secondary function as well, the umbilicus lobe. This developed from a string of spore cells through which the parent Volleypom fed the rest of the growing spore tissue and was directly attached to the megasporangium.


Line 112: Line 110:
Once the epidermis is complete the remainder of fibrous cell mat outside the megaspore shell is converted to parachyma. What's left of the mat inside the shell acts as a food source and depletes itself into the rest of the more defined body. The vascular disks beneath the epidermis begin developing further into true vascular fibers at this point. The largest and fastest growing one quickly becomes the dominant fiber, completely passing through the newly formed body creating a growing stalk and root. The many other vascular fibers cease their growth, essentially taking up the role of backup if the dominant fiber takes irreparable damage. If above ground they also can increase surface area for photosynthesis, and lean across the megaspore shell as a clear surface to perform this task.
Once the epidermis is complete the remainder of fibrous cell mat outside the megaspore shell is converted to parachyma. What's left of the mat inside the shell acts as a food source and depletes itself into the rest of the more defined body. The vascular disks beneath the epidermis begin developing further into true vascular fibers at this point. The largest and fastest growing one quickly becomes the dominant fiber, completely passing through the newly formed body creating a growing stalk and root. The many other vascular fibers cease their growth, essentially taking up the role of backup if the dominant fiber takes irreparable damage. If above ground they also can increase surface area for photosynthesis, and lean across the megaspore shell as a clear surface to perform this task.


[[File:Shaggy Volleypom - sprouts.jpg|thumb|center|Shaggy Volleypom sprouts.]]
Reduced to 30% of original (2370 x 2047)
user posted image
Shaggy Volleypom sprouts