Shaggy Volleypom: Difference between revisions

Jump to navigation Jump to search
Content added Content deleted
imported>Mnidjm
No edit summary
imported>Papainmanis
No edit summary
Line 29: Line 29:


[[File:Shaggy Volleypom - Simplified cross section diagram of a Shaggy Volleypom leaf.jpg|thumb|center|Simplified cross section diagram of a Shaggy Volleypom leaf]]
[[File:Shaggy Volleypom - Simplified cross section diagram of a Shaggy Volleypom leaf.jpg|thumb|center|Simplified cross section diagram of a Shaggy Volleypom leaf]]
The leaves of the Shaggy Volleypom have become more complex organs, with methods of dealing with heat. The supportive tracheal veins developed by it's distant ancestor, the Obsiditree, for the purpose of increasing CO2 access to the inner leaf, has gained greater branching directly into the surrounding spongy mesophyll. The entries to the tracheal system of each leaf can be found as a single pneumathode at the end of each major tracheal vein, across the edges and tip of the leaf. Each leafs tracheal system is isolated to that single leaf. There is no palisade mesophyll in the leaves, the task of photosynthesis is performed by cells throughout the spongy mesophyll. Like in it's ancestors the majority of vascular fiber and phloem in the leaf concentrates around the main tracheal veins, as the greatest rate of material exchange occurs in those regions of the mesophyll.
The leaves of the Shaggy Volleypom have become more complex organs, with methods of dealing with heat. The supportive tracheal veins developed by it's distant ancestor, the [[Obsiditree]], for the purpose of increasing CO2 access to the inner leaf, has gained greater branching directly into the surrounding spongy mesophyll. The entries to the tracheal system of each leaf can be found as a single pneumathode at the end of each major tracheal vein, across the edges and tip of the leaf. Each leafs tracheal system is isolated to that single leaf. There is no palisade mesophyll in the leaves, the task of photosynthesis is performed by cells throughout the spongy mesophyll. Like in it's ancestors the majority of vascular fiber and phloem in the leaf concentrates around the main tracheal veins, as the greatest rate of material exchange occurs in those regions of the mesophyll.


The movement of water is dictated, as it is throughout it's lineage leading all the way back to the Orange Spore Stalk, by guttation through its epidermis and evaporation across its surface. In the heat of the summer sunlight, far from their water source below, the rate of evaporation can become greater than it's vascular system can compensated for, so the Shaggy Volleypom has developed a couple solutions. The first solution is triggered when light intensity becomes too great for its tissues to handle, and it starts to heat up. This solution is to begin development of long pale trichomes, or hairs, that rise above the leaf and throw a shadow across its surface. It's a simple, but very effective, solution, and is triggered easily enough during springs and summers that the dense branches will be highlighted in a spotty manner with gray and white from the hairs reflecting and breaking up the pathway of light moving across them.
The movement of water is dictated, as it is throughout it's lineage leading all the way back to the [[Orange Spore Stalk]], by guttation through its epidermis and evaporation across its surface. In the heat of the summer sunlight, far from their water source below, the rate of evaporation can become greater than it's vascular system can compensated for, so the Shaggy Volleypom has developed a couple solutions. The first solution is triggered when light intensity becomes too great for its tissues to handle, and it starts to heat up. This solution is to begin development of long pale trichomes, or hairs, that rise above the leaf and throw a shadow across its surface. It's a simple, but very effective, solution, and is triggered easily enough during springs and summers that the dense branches will be highlighted in a spotty manner with gray and white from the hairs reflecting and breaking up the pathway of light moving across them.


The second action for tissue preservation is triggered by rapid evaporation, this can be due to excess heat from surroundings, light heating the leaf, or just more wind than usual that year dragging across the leaves and stripping them of moisture. This second solution is the excretion of a thin layer of PHB, a bioplastic, across both the upper and lower surfaces of their leaves. This substance is not evenly coated, and cracks are typically left to allow for some degree of evaporation to continue. When this action is taken the leaves with it take on a glossy appearance, and generally the plastic remains for the duration of the leaf.
The second action for tissue preservation is triggered by rapid evaporation, this can be due to excess heat from surroundings, light heating the leaf, or just more wind than usual that year dragging across the leaves and stripping them of moisture. This second solution is the excretion of a thin layer of PHB, a bioplastic, across both the upper and lower surfaces of their leaves. This substance is not evenly coated, and cracks are typically left to allow for some degree of evaporation to continue. When this action is taken the leaves with it take on a glossy appearance, and generally the plastic remains for the duration of the leaf.
Line 37: Line 37:
The pneumathode, or entrance to the tracheal system, remains fairly simple in structure, as a pore that passes through the epidermis and tracheal epithelium to allow direct gas exchange between the inside of the leaf and the outside world. However, the epidermis and tracheal epithelium do not directly join, there is a crevice that leads to the mesophyll which will expand open when in contact with water. The entrance of the pneumathode is shaped in a manner to lead rain droplets into itself, where they will be sucked up into the mesophyll through this crevice. Shortly behind this crevice as well are new tiny packets of tissue called rain bulbs, what they do is produce terpenes which seep out of the pneumathode and create aerosols in the air. Enough of this stuff will encourage the formation of rain clouds in the area over time.
The pneumathode, or entrance to the tracheal system, remains fairly simple in structure, as a pore that passes through the epidermis and tracheal epithelium to allow direct gas exchange between the inside of the leaf and the outside world. However, the epidermis and tracheal epithelium do not directly join, there is a crevice that leads to the mesophyll which will expand open when in contact with water. The entrance of the pneumathode is shaped in a manner to lead rain droplets into itself, where they will be sucked up into the mesophyll through this crevice. Shortly behind this crevice as well are new tiny packets of tissue called rain bulbs, what they do is produce terpenes which seep out of the pneumathode and create aerosols in the air. Enough of this stuff will encourage the formation of rain clouds in the area over time.


Though the Shaggy Volleypom is technically "evergreen", like other black flora it takes advantage of it's pigmentation to warm up during the winter, it still has morphological differences between seasons. The summer leaves contain well developed tissue between each supportive vein, taking full advantage of the summer sun. As the year progresses these broad leaves are shed and replaced by narrower, more filamentous leaves. These leaves comprise mainly of support veins wrapped by a thin layer of mesophyll and vascularization. Their main purpose is prevention of snow build up on the more delicate portions of the branches, as the massive sudden weight addition would snap them. The leaves achieve this by simply shedding snow due to their structure not providing surface to hold it. Warming during the day also facilitates this process, and provides a little water for the leaf to absorb.
Though the Shaggy Volleypom is technically "evergreen", like other [[Black Flora]] it takes advantage of it's pigmentation to warm up during the winter, it still has morphological differences between seasons. The summer leaves contain well developed tissue between each supportive vein, taking full advantage of the summer sun. As the year progresses these broad leaves are shed and replaced by narrower, more filamentous leaves. These leaves comprise mainly of support veins wrapped by a thin layer of mesophyll and vascularization. Their main purpose is prevention of snow build up on the more delicate portions of the branches, as the massive sudden weight addition would snap them. The leaves achieve this by simply shedding snow due to their structure not providing surface to hold it. Warming during the day also facilitates this process, and provides a little water for the leaf to absorb.


[[File:Shaggy Volleypom - Simplified diagram of summer leaf growth on a Shaggy Volleypom with tracheal veins enlarged. Winter leaf is similar, but lacking significant tissue between secondary tracheal veins.jpg|thumb|center|Simplified diagram of summer leaf growth on a Shaggy Volleypom with tracheal veins enlarged. Winter leaf is similar, but lacking significant tissue between secondary tracheal veins.]]
[[File:Shaggy Volleypom - Simplified diagram of summer leaf growth on a Shaggy Volleypom with tracheal veins enlarged. Winter leaf is similar, but lacking significant tissue between secondary tracheal veins.jpg|thumb|center|Simplified diagram of summer leaf growth on a Shaggy Volleypom with tracheal veins enlarged. Winter leaf is similar, but lacking significant tissue between secondary tracheal veins.]]
Line 44: Line 44:
Off of the end of the leaf spur grows a tough and simple microphyll. This dark structure is dense with photosynthic cells that can be considered proto-spongy mesophyll. Once the microphyll is formed and functional the spur, if new, will stimulate the formation of vascular fiber offshoots from its supporting twig to grow and infiltrate it and the microphyll. The leaf spur will contain this vascular fiber for the rest of its time on the Shaggy Volleypom. Inside the spur the vascular fiber will develop normally, however in the microphyll it undergoes a different change.
Off of the end of the leaf spur grows a tough and simple microphyll. This dark structure is dense with photosynthic cells that can be considered proto-spongy mesophyll. Once the microphyll is formed and functional the spur, if new, will stimulate the formation of vascular fiber offshoots from its supporting twig to grow and infiltrate it and the microphyll. The leaf spur will contain this vascular fiber for the rest of its time on the Shaggy Volleypom. Inside the spur the vascular fiber will develop normally, however in the microphyll it undergoes a different change.


The microphyll extends significantly in length, increasing it's available surface area. The vascular fiber inside expands a single chamber to increase in diameter and form a central support vein, like in the ancestral Obsidishrub, though with the more complex functionality of increased gas absorption like in it's ancestral Obsidian Tree with the formation of its primary pneumathode. The walls of the growing tracheal vein increase in thickness, multiplying the number of cells across the wall, while the cells themselves increase the rigidity of their cell walls with modest additions of lignin and other fibers. The length of the tracheal vein, and vascular fibers, continues to grow at this point and the leaf continues to grow with it.
The microphyll extends significantly in length, increasing it's available surface area. The vascular fiber inside expands a single chamber to increase in diameter and form a central support vein, like in the ancestral [[Obsidian Shrub]], though with the more complex functionality of increased gas absorption like in it's ancestral [[Obsidian Tree]] with the formation of its primary pneumathode. The walls of the growing tracheal vein increase in thickness, multiplying the number of cells across the wall, while the cells themselves increase the rigidity of their cell walls with modest additions of lignin and other fibers. The length of the tracheal vein, and vascular fibers, continues to grow at this point and the leaf continues to grow with it.


The vascular fibers at this point begin separating from the tracheal vein, as it becomes a distinct structure and tissue. The cells along the dorsal and ventral sides of the tracheal vein remain steady in their number and growth, but the cells in the remaining two sides begin growing rapidly, once the vascular fibers break away, to start forming secondary tracheal veins. This growth pushes the tissue of the leaf outward and stimulates increased growth of mesophyll, in winter leaves this increased growth does not happen. Eventually the secondary veins mature and the leaf fully forms.
The vascular fibers at this point begin separating from the tracheal vein, as it becomes a distinct structure and tissue. The cells along the dorsal and ventral sides of the tracheal vein remain steady in their number and growth, but the cells in the remaining two sides begin growing rapidly, once the vascular fibers break away, to start forming secondary tracheal veins. This growth pushes the tissue of the leaf outward and stimulates increased growth of mesophyll, in winter leaves this increased growth does not happen. Eventually the secondary veins mature and the leaf fully forms.
Line 83: Line 83:
The formation of new twigs, which in turn give rise to branches, is triggered similarly to the formation of leaf spurs, however with a continual and comparably fast extension of the spur and parachyma rather than capping off with a microphyll. This developing twig normally recruits infiltrating vascular fibers to become its lead fibers, but in unusual cases can force side growth out of younger fibers if no infiltrating ones are available.
The formation of new twigs, which in turn give rise to branches, is triggered similarly to the formation of leaf spurs, however with a continual and comparably fast extension of the spur and parachyma rather than capping off with a microphyll. This developing twig normally recruits infiltrating vascular fibers to become its lead fibers, but in unusual cases can force side growth out of younger fibers if no infiltrating ones are available.


The branches and trunk of the Shaggy Volleypom have no distinct rings, they do not have a true cambium like many earth plants. Rather their growth is carried out by a mess of undifferentiated and secondarily undifferentiated cells throughout its width as tissue analogous to parachyma. This parachyma gives rise to vascular fibers and simple phloem dispersed throughout itself in no particular pattern other than age. The vascular fibers end up roughly numbering greatest toward the center of the trunk and older branches, as these large living structures continue to expand themselves as well as have their numbers multiplied by differentiating parachyma during the duration of the organism, while never being deconstructed. The walls of the cells of the vascular fibers are in multiple layers, some highly lignified and others not, these add structural support for the whole organism.The simple phloem, thick strands of fiber comprised of disk shaped cells stacked on one another, number greatly throughout the parachyma, sections being dismantled and replaced as damage occurs. The parachyma grows between these fibers, the tough and lignified vascular fibers acting as central points it pushes away from and the phloem gets moved about freely by this growth due to size and thinner cell walls.
The branches and trunk of the Shaggy Volleypom have no distinct rings, they do not have a true cambium like many earth plants. Rather their growth is carried out by a mess of undifferentiated and secondarily undifferentiated cells throughout its width as tissue analogous to parachyma. This parachyma gives rise to vascular fibers and simple phloem dispersed throughout itself in no particular pattern other than age. The vascular fibers end up roughly numbering greatest toward the center of the trunk and older branches, as these large living structures continue to expand themselves as well as have their numbers multiplied by differentiating parachyma during the duration of the organism, while never being deconstructed. The walls of the cells of the vascular fibers are in multiple layers, some highly lignified and others not, these add structural support for the whole organism. The simple phloem, thick strands of fiber comprised of disk shaped cells stacked on one another, number greatly throughout the parachyma, sections being dismantled and replaced as damage occurs. The parachyma grows between these fibers, the tough and lignified vascular fibers acting as central points it pushes away from and the phloem gets moved about freely by this growth due to size and thinner cell walls.


As parachyma cells experience increased pressure between vascular fibers they develop greater and greater lignification in their cell walls. This process tends to start first with cells roughly toward the middle, where the pressures have existed longest and the vascular fibers are closest together, but can arise between close vascular fibers away from the center as well. Once fully enclosed by lignified parachyma a vascular fiber no longer can expand outward from its center and will stop expanding in that direction. Fibers found in the partially lignified areas tend to be largest, as they are the oldest fibers not yet enclosed in hard woody tissue. Those vascular fibers found in the soft undifferentiated parachyma are generally younger and smaller. The growing parachyma will treat the lignified parachyma similarly to vascular fiber, pushing off it, which increases pressure between it and any other unbudging structures, thus perpetuating The growth of lignified tissues. As phloem is pushed away from lignified areas by parachyma growth they gradually form clusters. Eventually these clusters will become trapped in wood tissue where they no longer can move around and over time may be crushed under pressure as the surrounding cell walls continue to thicken.
As parachyma cells experience increased pressure between vascular fibers they develop greater and greater lignification in their cell walls. This process tends to start first with cells roughly toward the middle, where the pressures have existed longest and the vascular fibers are closest together, but can arise between close vascular fibers away from the center as well. Once fully enclosed by lignified parachyma a vascular fiber no longer can expand outward from its center and will stop expanding in that direction. Fibers found in the partially lignified areas tend to be largest, as they are the oldest fibers not yet enclosed in hard woody tissue. Those vascular fibers found in the soft undifferentiated parachyma are generally younger and smaller. The growing parachyma will treat the lignified parachyma similarly to vascular fiber, pushing off it, which increases pressure between it and any other unbudging structures, thus perpetuating The growth of lignified tissues. As phloem is pushed away from lignified areas by parachyma growth they gradually form clusters. Eventually these clusters will become trapped in wood tissue where they no longer can move around and over time may be crushed under pressure as the surrounding cell walls continue to thicken.