Shaggy Volleypom: Difference between revisions

Jump to navigation Jump to search
Content added Content deleted
imported>OviraptorFan
mNo edit summary
imported>Disgustedorite
m (→‎top: clean up)
Line 58: Line 58:


[[File:Shaggy Volleypom - Field samples of Shaggy Volleypom .jpg|thumb|center|Field samples of Shaggy Volleypom sporangium structures displayed by proud Naucean researcher (from right to left); pair of drying open microsporangium, harvested immature cluster of microsporangium beginning to open due to desiccation, slice of partially mature megasporangium with developing megaspores exposed, loose megaspores, nearly mature megasporangium intact, labeled glass jar of mature microspores in liquid.]]
[[File:Shaggy Volleypom - Field samples of Shaggy Volleypom .jpg|thumb|center|Field samples of Shaggy Volleypom sporangium structures displayed by proud Naucean researcher (from right to left); pair of drying open microsporangium, harvested immature cluster of microsporangium beginning to open due to desiccation, slice of partially mature megasporangium with developing megaspores exposed, loose megaspores, nearly mature megasporangium intact, labeled glass jar of mature microspores in liquid.]]
The megasporangium is a round trilobed structure with a diameter about 10-15cm at maturity, these grow in clusters ranging from 30cm to 90cm across. Their inside are densely packed with oval megaspores 1-2cm long which are arranged similarly to an Earth pomegranate. The three lobes are divided by crevices, ancestrally these are the points where a sporangium opens, but in the megasporangium These remain about 3mm in breadth and act as receiving channels for microspores. The clusters of megasporangium, once their cargo inside is mature, fall to the ground. The walls of the megasporangium are tough but papery, deforming on impact and scattering the thicker walled megaspores as they bounce and roll across the forest floor.
The megasporangium is a round trilobed structure with a diameter about 10–15 cm at maturity, these grow in clusters ranging from 30 cm to 90 cm across. Their inside are densely packed with oval megaspores 1–2 cm long which are arranged similarly to an Earth pomegranate. The three lobes are divided by crevices, ancestrally these are the points where a sporangium opens, but in the megasporangium These remain about 3mm in breadth and act as receiving channels for microspores. The clusters of megasporangium, once their cargo inside is mature, fall to the ground. The walls of the megasporangium are tough but papery, deforming on impact and scattering the thicker walled megaspores as they bounce and roll across the forest floor.


The microsporangium is a trilobed oblong structure 3-5cm long. These grow in large tight clusters ranging in size from 10cm to 120cm across. They function similarly to the ancestral sporangiums of their lineage, pumping out large amounts of orange spores into the air as they curl open like more typical black flora sporangiums. These microspores float about until they drift into the receiving channel of a megasporangium, at which point they fall in and stick to the inner surface or top of a megaspore. Once stuck to a megaspore the two will merge become a fertile megaspore, at which point the outer layer of the spore becomes a thickened wall of cellulose and lignin as armor to keep safe during falling.
The microsporangium is a trilobed oblong structure 3–5 cm long. These grow in large tight clusters ranging in size from 10 cm to 120 cm across. They function similarly to the ancestral sporangiums of their lineage, pumping out large amounts of orange spores into the air as they curl open like more typical black flora sporangiums. These microspores float about until they drift into the receiving channel of a megasporangium, at which point they fall in and stick to the inner surface or top of a megaspore. Once stuck to a megaspore the two will merge become a fertile megaspore, at which point the outer layer of the spore becomes a thickened wall of cellulose and lignin as armor to keep safe during falling.


Both structures are grown throughout the year, with megasporangium taking up to two years to fully mature. The scattered megaspores require either a stratification period of about 60 days minimum to break dormancy, or to remain in dormancy for two years without stratification before growing. The hardened shells meant to protect from falls perform a secondary function by preventing ease of consumption by fauna that may try to eat them, though persistence will still break them. They are commonly stashed away by creatures that horde food for storage.
Both structures are grown throughout the year, with megasporangium taking up to two years to fully mature. The scattered megaspores require either a stratification period of about 60 days minimum to break dormancy, or to remain in dormancy for two years without stratification before growing. The hardened shells meant to protect from falls perform a secondary function by preventing ease of consumption by fauna that may try to eat them, though persistence will still break them. They are commonly stashed away by creatures that horde food for storage.
Line 98: Line 98:
B2. Fibrous PCC
B2. Fibrous PCC
B3. Bark layer]]
B3. Bark layer]]
The edge of the parachyma is ringed with a tissue reminiscent in function to a proto-cork cambium (PCC). At the boundary of the parachyma and proto-cork cambium the latter is broken apart by the growth of the former. Cells of PCC replicate here, always pushing outward from the parachyma. As observation travels further outward along the PCC the tissue becomes more uniform, vertically fibrous, and unbroken, with excepting to strips housing access to the inner air and water labyrinths. Further out still the access to the water labyrinths is severed, at this point the cells are tighter packed, and begin excretion of lignin and suberin into their extracellular matrix, or cell wall, making them more rigid and very waterproof. As these masses of cells are pushed out further by those behind them their layers fracture into macroscopic fibrous chunks that can measure up to 30cm in length. These chunks may curl slightly at their edges due to desiccation, though the cells inside at this point should all be dead and desiccated regardless. At this point it is the surface of the branch or trunk, and what remains is a flaky and fibrous, waterproof, layer that can be called a bark (though more specifically, periderm). This bark as it continues to be grown may end up several centimeters thick in older areas, and non-existent in new tissues where parachyma is directly exposed.
The edge of the parachyma is ringed with a tissue reminiscent in function to a proto-cork cambium (PCC). At the boundary of the parachyma and proto-cork cambium the latter is broken apart by the growth of the former. Cells of PCC replicate here, always pushing outward from the parachyma. As observation travels further outward along the PCC the tissue becomes more uniform, vertically fibrous, and unbroken, with excepting to strips housing access to the inner air and water labyrinths. Further out still the access to the water labyrinths is severed, at this point the cells are tighter packed, and begin excretion of lignin and suberin into their extracellular matrix, or cell wall, making them more rigid and very waterproof. As these masses of cells are pushed out further by those behind them their layers fracture into macroscopic fibrous chunks that can measure up to 30 cm in length. These chunks may curl slightly at their edges due to desiccation, though the cells inside at this point should all be dead and desiccated regardless. At this point it is the surface of the branch or trunk, and what remains is a flaky and fibrous, waterproof, layer that can be called a bark (though more specifically, periderm). This bark as it continues to be grown may end up several centimeters thick in older areas, and non-existent in new tissues where parachyma is directly exposed.


The roots of of the Shaggy Volleypom can reach very deep into the soil on their search to access groundwater. This helps prevent the massive organism from drying out. These organs can be as long as the organism itself, growing outward and downward. Their massive root nets higher up spread their base support and anchor them to the ground and other rooted flora, preventing wind storms from so easily uprooting them and knocking them over.
The roots of of the Shaggy Volleypom can reach very deep into the soil on their search to access groundwater. This helps prevent the massive organism from drying out. These organs can be as long as the organism itself, growing outward and downward. Their massive root nets higher up spread their base support and anchor them to the ground and other rooted flora, preventing wind storms from so easily uprooting them and knocking them over.