Shaggy Volleypom: Difference between revisions

Jump to navigation Jump to search
Content added Content deleted
m (→‎top: adding ALL the things)
m (→‎top: clean up, typos fixed: However → However, , it's → its (6), of of → of)
Line 22: Line 22:


[[File:Shaggy Volleypom - Simplified cross section diagram of a Shaggy Volleypom leaf.jpg|thumb|center|Simplified cross section diagram of a Shaggy Volleypom leaf]]
[[File:Shaggy Volleypom - Simplified cross section diagram of a Shaggy Volleypom leaf.jpg|thumb|center|Simplified cross section diagram of a Shaggy Volleypom leaf]]
The leaves of the Shaggy Volleypom have become more complex organs, with methods of dealing with heat. The supportive tracheal veins developed by it's distant ancestor, the [[Obsiditree]], for the purpose of increasing CO2 access to the inner leaf, has gained greater branching directly into the surrounding spongy mesophyll. The entries to the tracheal system of each leaf can be found as a single pneumathode at the end of each major tracheal vein, across the edges and tip of the leaf. Each leafs tracheal system is isolated to that single leaf. There is no palisade mesophyll in the leaves, the task of photosynthesis is performed by cells throughout the spongy mesophyll. Like in it's ancestors the majority of vascular fiber and phloem in the leaf concentrates around the main tracheal veins, as the greatest rate of material exchange occurs in those regions of the mesophyll.
The leaves of the Shaggy Volleypom have become more complex organs, with methods of dealing with heat. The supportive tracheal veins developed by its distant ancestor, the [[Obsiditree]], for the purpose of increasing CO2 access to the inner leaf, has gained greater branching directly into the surrounding spongy mesophyll. The entries to the tracheal system of each leaf can be found as a single pneumathode at the end of each major tracheal vein, across the edges and tip of the leaf. Each leafs tracheal system is isolated to that single leaf. There is no palisade mesophyll in the leaves, the task of photosynthesis is performed by cells throughout the spongy mesophyll. Like in its ancestors the majority of vascular fiber and phloem in the leaf concentrates around the main tracheal veins, as the greatest rate of material exchange occurs in those regions of the mesophyll.


The movement of water is dictated, as it is throughout it's lineage leading all the way back to the [[Orange Spore Stalk]], by guttation through its epidermis and evaporation across its surface. In the heat of the summer sunlight, far from their water source below, the rate of evaporation can become greater than it's vascular system can compensated for, so the Shaggy Volleypom has developed a couple solutions. The first solution is triggered when light intensity becomes too great for its tissues to handle, and it starts to heat up. This solution is to begin development of long pale trichomes, or hairs, that rise above the leaf and throw a shadow across its surface. It's a simple, but very effective, solution, and is triggered easily enough during springs and summers that the dense branches will be highlighted in a spotty manner with gray and white from the hairs reflecting and breaking up the pathway of light moving across them.
The movement of water is dictated, as it is throughout its lineage leading all the way back to the [[Orange Spore Stalk]], by guttation through its epidermis and evaporation across its surface. In the heat of the summer sunlight, far from their water source below, the rate of evaporation can become greater than it's vascular system can compensated for, so the Shaggy Volleypom has developed a couple solutions. The first solution is triggered when light intensity becomes too great for its tissues to handle, and it starts to heat up. This solution is to begin development of long pale trichomes, or hairs, that rise above the leaf and throw a shadow across its surface. It's a simple, but very effective, solution, and is triggered easily enough during springs and summers that the dense branches will be highlighted in a spotty manner with gray and white from the hairs reflecting and breaking up the pathway of light moving across them.


The second action for tissue preservation is triggered by rapid evaporation, this can be due to excess heat from surroundings, light heating the leaf, or just more wind than usual that year dragging across the leaves and stripping them of moisture. This second solution is the excretion of a thin layer of PHB, a bioplastic, across both the upper and lower surfaces of their leaves. This substance is not evenly coated, and cracks are typically left to allow for some degree of evaporation to continue. When this action is taken the leaves with it take on a glossy appearance, and generally the plastic remains for the duration of the leaf.
The second action for tissue preservation is triggered by rapid evaporation, this can be due to excess heat from surroundings, light heating the leaf, or just more wind than usual that year dragging across the leaves and stripping them of moisture. This second solution is the excretion of a thin layer of PHB, a bioplastic, across both the upper and lower surfaces of their leaves. This substance is not evenly coated, and cracks are typically left to allow for some degree of evaporation to continue. When this action is taken the leaves with it take on a glossy appearance, and generally the plastic remains for the duration of the leaf.
Line 30: Line 30:
The pneumathode, or entrance to the tracheal system, remains fairly simple in structure, as a pore that passes through the epidermis and tracheal epithelium to allow direct gas exchange between the inside of the leaf and the outside world. However, the epidermis and tracheal epithelium do not directly join, there is a crevice that leads to the mesophyll which will expand open when in contact with water. The entrance of the pneumathode is shaped in a manner to lead rain droplets into itself, where they will be sucked up into the mesophyll through this crevice. Shortly behind this crevice as well are new tiny packets of tissue called rain bulbs, what they do is produce terpenes which seep out of the pneumathode and create aerosols in the air. Enough of this stuff will encourage the formation of rain clouds in the area over time.
The pneumathode, or entrance to the tracheal system, remains fairly simple in structure, as a pore that passes through the epidermis and tracheal epithelium to allow direct gas exchange between the inside of the leaf and the outside world. However, the epidermis and tracheal epithelium do not directly join, there is a crevice that leads to the mesophyll which will expand open when in contact with water. The entrance of the pneumathode is shaped in a manner to lead rain droplets into itself, where they will be sucked up into the mesophyll through this crevice. Shortly behind this crevice as well are new tiny packets of tissue called rain bulbs, what they do is produce terpenes which seep out of the pneumathode and create aerosols in the air. Enough of this stuff will encourage the formation of rain clouds in the area over time.


Though the Shaggy Volleypom is technically "evergreen", like other [[Black Flora]] it takes advantage of it's pigmentation to warm up during the winter, it still has morphological differences between seasons. The summer leaves contain well developed tissue between each supportive vein, taking full advantage of the summer sun. As the year progresses these broad leaves are shed and replaced by narrower, more filamentous leaves. These leaves comprise mainly of support veins wrapped by a thin layer of mesophyll and vascularization. Their main purpose is prevention of snow build up on the more delicate portions of the branches, as the massive sudden weight addition would snap them. The leaves achieve this by simply shedding snow due to their structure not providing surface to hold it. Warming during the day also facilitates this process, and provides a little water for the leaf to absorb.
Though the Shaggy Volleypom is technically "evergreen", like other [[Black Flora]] it takes advantage of its pigmentation to warm up during the winter, it still has morphological differences between seasons. The summer leaves contain well developed tissue between each supportive vein, taking full advantage of the summer sun. As the year progresses these broad leaves are shed and replaced by narrower, more filamentous leaves. These leaves comprise mainly of support veins wrapped by a thin layer of mesophyll and vascularization. Their main purpose is prevention of snow build up on the more delicate portions of the branches, as the massive sudden weight addition would snap them. The leaves achieve this by simply shedding snow due to their structure not providing surface to hold it. Warming during the day also facilitates this process, and provides a little water for the leaf to absorb.


[[File:Shaggy Volleypom - Simplified diagram of summer leaf growth on a Shaggy Volleypom with tracheal veins enlarged. Winter leaf is similar, but lacking significant tissue between secondary tracheal veins.jpg|thumb|center|Simplified diagram of summer leaf growth on a Shaggy Volleypom with tracheal veins enlarged. Winter leaf is similar, but lacking significant tissue between secondary tracheal veins.]]
[[File:Shaggy Volleypom - Simplified diagram of summer leaf growth on a Shaggy Volleypom with tracheal veins enlarged. Winter leaf is similar, but lacking significant tissue between secondary tracheal veins.jpg|thumb|center|Simplified diagram of summer leaf growth on a Shaggy Volleypom with tracheal veins enlarged. Winter leaf is similar, but lacking significant tissue between secondary tracheal veins.]]
The majority of leaves can be found on young non-woody twigs and the continued growth of leaf spurs on newly woody twigs and young branches. The growth of a leaf begins with the continuation or creation of a leaf spur by the epidermis. A leaf spur is a slow growing nub of tissue that sits as a part of the epidermis, so that as the parachyma underneath grow and expands the leaf spur simply gets pushed outward. When bark develops around it the outer end of the leaf spur remains softer, photosynthetic, epidermis. However in time the bark will overtake it as the layer expands.
The majority of leaves can be found on young non-woody twigs and the continued growth of leaf spurs on newly woody twigs and young branches. The growth of a leaf begins with the continuation or creation of a leaf spur by the epidermis. A leaf spur is a slow growing nub of tissue that sits as a part of the epidermis, so that as the parachyma underneath grow and expands the leaf spur simply gets pushed outward. When bark develops around it the outer end of the leaf spur remains softer, photosynthetic, epidermis. However, in time the bark will overtake it as the layer expands.


Off of the end of the leaf spur grows a tough and simple microphyll. This dark structure is dense with photosynthic cells that can be considered proto-spongy mesophyll. Once the microphyll is formed and functional the spur, if new, will stimulate the formation of vascular fiber offshoots from its supporting twig to grow and infiltrate it and the microphyll. The leaf spur will contain this vascular fiber for the rest of its time on the Shaggy Volleypom. Inside the spur the vascular fiber will develop normally, however in the microphyll it undergoes a different change.
Off of the end of the leaf spur grows a tough and simple microphyll. This dark structure is dense with photosynthic cells that can be considered proto-spongy mesophyll. Once the microphyll is formed and functional the spur, if new, will stimulate the formation of vascular fiber offshoots from its supporting twig to grow and infiltrate it and the microphyll. The leaf spur will contain this vascular fiber for the rest of its time on the Shaggy Volleypom. Inside the spur the vascular fiber will develop normally, however in the microphyll it undergoes a different change.


The microphyll extends significantly in length, increasing it's available surface area. The vascular fiber inside expands a single chamber to increase in diameter and form a central support vein, like in the ancestral [[Obsidian Shrub]], though with the more complex functionality of increased gas absorption like in it's ancestral [[Obsidian Tree]] with the formation of its primary pneumathode. The walls of the growing tracheal vein increase in thickness, multiplying the number of cells across the wall, while the cells themselves increase the rigidity of their cell walls with modest additions of lignin and other fibers. The length of the tracheal vein, and vascular fibers, continues to grow at this point and the leaf continues to grow with it.
The microphyll extends significantly in length, increasing it's available surface area. The vascular fiber inside expands a single chamber to increase in diameter and form a central support vein, like in the ancestral [[Obsidian Shrub]], though with the more complex functionality of increased gas absorption like in its ancestral [[Obsidian Tree]] with the formation of its primary pneumathode. The walls of the growing tracheal vein increase in thickness, multiplying the number of cells across the wall, while the cells themselves increase the rigidity of their cell walls with modest additions of lignin and other fibers. The length of the tracheal vein, and vascular fibers, continues to grow at this point and the leaf continues to grow with it.


The vascular fibers at this point begin separating from the tracheal vein, as it becomes a distinct structure and tissue. The cells along the dorsal and ventral sides of the tracheal vein remain steady in their number and growth, but the cells in the remaining two sides begin growing rapidly, once the vascular fibers break away, to start forming secondary tracheal veins. This growth pushes the tissue of the leaf outward and stimulates increased growth of mesophyll, in winter leaves this increased growth does not happen. Eventually the secondary veins mature and the leaf fully forms.
The vascular fibers at this point begin separating from the tracheal vein, as it becomes a distinct structure and tissue. The cells along the dorsal and ventral sides of the tracheal vein remain steady in their number and growth, but the cells in the remaining two sides begin growing rapidly, once the vascular fibers break away, to start forming secondary tracheal veins. This growth pushes the tissue of the leaf outward and stimulates increased growth of mesophyll, in winter leaves this increased growth does not happen. Eventually the secondary veins mature and the leaf fully forms.
Line 89: Line 89:
The edge of the parachyma is ringed with a tissue reminiscent in function to a proto-cork cambium (PCC). At the boundary of the parachyma and proto-cork cambium the latter is broken apart by the growth of the former. Cells of PCC replicate here, always pushing outward from the parachyma. As observation travels further outward along the PCC the tissue becomes more uniform, vertically fibrous, and unbroken, with excepting to strips housing access to the inner air and water labyrinths. Further out still the access to the water labyrinths is severed, at this point the cells are tighter packed, and begin excretion of lignin and suberin into their extracellular matrix, or cell wall, making them more rigid and very waterproof. As these masses of cells are pushed out further by those behind them their layers fracture into macroscopic fibrous chunks that can measure up to 30 cm in length. These chunks may curl slightly at their edges due to desiccation, though the cells inside at this point should all be dead and desiccated regardless. At this point it is the surface of the branch or trunk, and what remains is a flaky and fibrous, waterproof, layer that can be called a bark (though more specifically, periderm). This bark as it continues to be grown may end up several centimeters thick in older areas, and non-existent in new tissues where parachyma is directly exposed.
The edge of the parachyma is ringed with a tissue reminiscent in function to a proto-cork cambium (PCC). At the boundary of the parachyma and proto-cork cambium the latter is broken apart by the growth of the former. Cells of PCC replicate here, always pushing outward from the parachyma. As observation travels further outward along the PCC the tissue becomes more uniform, vertically fibrous, and unbroken, with excepting to strips housing access to the inner air and water labyrinths. Further out still the access to the water labyrinths is severed, at this point the cells are tighter packed, and begin excretion of lignin and suberin into their extracellular matrix, or cell wall, making them more rigid and very waterproof. As these masses of cells are pushed out further by those behind them their layers fracture into macroscopic fibrous chunks that can measure up to 30 cm in length. These chunks may curl slightly at their edges due to desiccation, though the cells inside at this point should all be dead and desiccated regardless. At this point it is the surface of the branch or trunk, and what remains is a flaky and fibrous, waterproof, layer that can be called a bark (though more specifically, periderm). This bark as it continues to be grown may end up several centimeters thick in older areas, and non-existent in new tissues where parachyma is directly exposed.


The roots of of the Shaggy Volleypom can reach very deep into the soil on their search to access groundwater. This helps prevent the massive organism from drying out. These organs can be as long as the organism itself, growing outward and downward. Their massive root nets higher up spread their base support and anchor them to the ground and other rooted flora, preventing wind storms from so easily uprooting them and knocking them over.
The roots of the Shaggy Volleypom can reach very deep into the soil on their search to access groundwater. This helps prevent the massive organism from drying out. These organs can be as long as the organism itself, growing outward and downward. Their massive root nets higher up spread their base support and anchor them to the ground and other rooted flora, preventing wind storms from so easily uprooting them and knocking them over.


These deep roots also provide access to a range of otherwise locked away substances, including arsenic. This element when drawn up into the Shaggy Volleypom is not shed or excreted readily like other noxious chemicals found during extraction. Rather it is used in the formation of organic arsenic acids that accumulate in the leaves and new growth of the organism, though not the sporangiums. This substance deters and can even kill foraging herbivores, especially smaller ones with voracious appetites and inability to easily source other foods. As leaves are shed to the forest floor they increase the bioavailability of arsenic in their area, which will be drawn back up into the Shaggy Volleypom, but may also spread into other organisms as contamination.
These deep roots also provide access to a range of otherwise locked away substances, including arsenic. This element when drawn up into the Shaggy Volleypom is not shed or excreted readily like other noxious chemicals found during extraction. Rather it is used in the formation of organic arsenic acids that accumulate in the leaves and new growth of the organism, though not the sporangiums. This substance deters and can even kill foraging herbivores, especially smaller ones with voracious appetites and inability to easily source other foods. As leaves are shed to the forest floor they increase the bioavailability of arsenic in their area, which will be drawn back up into the Shaggy Volleypom, but may also spread into other organisms as contamination.
Line 97: Line 97:


[[File:Shaggy Volleypom - germinating megaspore.jpg|thumb|center|Simplified cross section diagram of a germinating megaspore, chronologically top to bottom.]]
[[File:Shaggy Volleypom - germinating megaspore.jpg|thumb|center|Simplified cross section diagram of a germinating megaspore, chronologically top to bottom.]]
The germination process of a megaspore differs somewhat from the typical black flora spore, allowed by its size. The inside of a fully mature megaspore is made up of many lobes of tissue, as well as a single massive yolk-like cell with a loose and cushy cell wall. This singular cell is the zygote. Surrounding it is a soft armor of cushion lobes to protect it from jostling or taking damage during falling. In front of it is a single lobe with the purpose of breaking through the germ pore during germination, after which it is absorbed by the growing organism. Behind the zygote are large storage lobes that provide energy and materials to the developing organism before leaving it's shell and during it's initial growth outside. The cushion lobes share this role after completing their main function. Toward the very back is a long lobe that takes on storage as a secondary function as well, the umbilicus lobe. This developed from a string of spore cells through which the parent Volleypom fed the rest of the growing spore tissue and was directly attached to the megasporangium.
The germination process of a megaspore differs somewhat from the typical black flora spore, allowed by its size. The inside of a fully mature megaspore is made up of many lobes of tissue, as well as a single massive yolk-like cell with a loose and cushy cell wall. This singular cell is the zygote. Surrounding it is a soft armor of cushion lobes to protect it from jostling or taking damage during falling. In front of it is a single lobe with the purpose of breaking through the germ pore during germination, after which it is absorbed by the growing organism. Behind the zygote are large storage lobes that provide energy and materials to the developing organism before leaving it's shell and during its initial growth outside. The cushion lobes share this role after completing their main function. Toward the very back is a long lobe that takes on storage as a secondary function as well, the umbilicus lobe. This developed from a string of spore cells through which the parent Volleypom fed the rest of the growing spore tissue and was directly attached to the megasporangium.


Once dormancy is broken the zygote will begin rapidly dividing into smaller and smaller filamentous cells. These cells form a fibrous mat akin to the filamentous mats and films of other black flora during their early development, however this stage is able to occur entirely within the safety of the megaspore shell. Eventually the surrounding lobes are depleted and absorbed into the mat, at which point the front most lobe, or egg tooth lobe, breaks through the germ pore and surrounding shell. The cell mat grows through this new hole, spilling out as a ball of gray-black fuzz as its photosynthic pigments start being produced. Shortly after this the surface of the fuzz ball begins firming into a true epidermis and beneath this layer parachyma and prevascular disks begin forming.
Once dormancy is broken the zygote will begin rapidly dividing into smaller and smaller filamentous cells. These cells form a fibrous mat akin to the filamentous mats and films of other black flora during their early development, however this stage is able to occur entirely within the safety of the megaspore shell. Eventually the surrounding lobes are depleted and absorbed into the mat, at which point the front most lobe, or egg tooth lobe, breaks through the germ pore and surrounding shell. The cell mat grows through this new hole, spilling out as a ball of gray-black fuzz as its photosynthic pigments start being produced. Shortly after this the surface of the fuzz ball begins firming into a true epidermis and beneath this layer parachyma and prevascular disks begin forming.