Tlukvaequabora

From Sagan 4 Alpha Wiki
Jump to navigation Jump to search
Tlukvaequabora
(Detlukvamequohi amayulvdi)
Main image of Tlukvaequabora
Species is extant.
Information
CreatorMnidjm Other
Week/Generation24/154
HabitatClayren Tropical Coast, Hydro Tropical Coast, Koopa Tropical Coast, Wolfgang Tropical Coast, Oz Temperate Coast, Anguan Temperate Coast, Clayren Tropical Beach, Hydro Tropical Beach, Koopa Tropical Beach, Negative Tropical Beach, Ovi Tropical Beach, Penumbra Tropical Beach, Putspooza Tropical Beach, Solpimr Tropical Beach, Wolfgang Tropical Beach, Abello Temperate Beach, Anguan Temperate Beach, Ittiz Temperate Beach, Jaydoh Temperate Beach, Nuke Temperate Beach, Oz Temperate Beach, Time Temperate Beach, Barlowe Tropical Rainforest, Ovi Tropical Rainforest, Penumbra Tropical Rainforest, Putspoozoa Tropical Rainforest, Solpimr Tropical Rainforest, Barlowe Temperate Rainforest, Martyk Temperate Rainforest, BigL Tropical Coast, Jlindy Tropical Coast, Ninth Tropical Coast, Dass Temperate Coast, Raq Temperate Coast, Jaydoh Temperate Coast, BigL Tropical Beach, Jlindy Tropical Beach, Ninth Tropical Beach, Dass Temperate Beach, Raq Temperate Beach, Bardic Salt Swamp, Blood Salt Swamp, Kenotai Salt Swamp, Pipcard Salt Swamp, Terra Salt Swamp, Wright Salt Swamp, Dixon Tropical Rainforest, Dixon Temperate Rainforest, Maineiac Temperate Coast, Maineiac Temperate Beach, Maineiac Salt Marsh
Size100 m Tall
Primary MobilitySessile
SupportExoskeleton (Salt Secreting Bark)
DietPhotosynthesis
RespirationAerobic
ThermoregulationEctothermic
ReproductionSexual, Airborne fertilizing spores; fuzzy bouncy, buoyant berries, Seeds
Taxonomy
Domain
Kingdom
Subkingdom
Division
Class
Order
Family
Genus
Species
Eukaryota
Phoenoplastida
Phoenophyta (info)
Spherophyta (info)
Knodophytopsida
Knododendrales
Muriapalmaceae
Detlukvamequohi
Detlukvamequohi amayulvdi
Ancestor:Descendants:

Replacing their ancestor in overlapping environments, the fuzzbora in all overlapping environments, the tlukvaequabora is a true giant. Doubling in size, they tower over the surf. They form sprawling mangrove forests along the coasts of the major Barlowean landmasses. They play a vital role in the landscape of the coastal shorelines of Barlowe, as their deep roots provide a barrier against the eroding forces of the tidewaters and storm surges by trapping sediment with their roots. They are characterized by their large size and their aerial root systems, which hang from their top branches and wrap around each other and those of their neighbors, giving the groves a tangled, weaving canopy with plenty of space for creatures to make their home.

Size

Reaching heights that dwarf all but the largest individual Terran trees, undisturbed tlukvaequabora can reach sizes of upwards of 100 meters in height, with an average diameter reaching 10 meters at the base. Because of its size, the tlukvaequabora has had to further develop their abilities to pull water to the top of their structure. Water from the roots can be pushed up only a few meters by osmotic pressure but can reach the full height of the tlukvaequabora by using large negative pressures in the tlukvaequabora's water tubules and subpressure from evaporating water at the leaves. Tlukvaequaboras supplement water from the sand with fog, taken up through aerial roots that grow near the base of their puff stem junction.

Marine adaptations

Transitioning to an amphibious lifestyle was a difficult process. The high salinity of the water and the poor oxygen content of the marine sediment proved a challenge to fuzzbora that grew along the coastal regions of Solpimr

Salt adaptations

To protect themselves from excess salinity in the soil of the intertidal zones, they have developed a series of adaptions that both prevent the uptake of a significant amount of salt and remove any that may end up in their vascular systems. These adaptations allow for the delineation of the two major life stages of the tlukvaequabora, marked primarily by their major methods of dealing with salinity: the pre-reproductive "secretor" stage and the fully grown "non- secretor" stage.

The first stage, secretor, is geared towards protecting the tlukvaequabora while they are growing. Specialized glands within the tlukvaequabora, called salinicoules, concentrate the salt in hypersaline solution and excrete it through pores within their leaves and along the surface of their bark. As the water evaporates, salt crystals often form on the surface of the tlukvaequabora. This has the added benefit of making the growing tlukvaequabora unpalatable to most herbivores, protecting the growing seedlings from predation until they reach sufficient size for reproduction.

Once reaching maturity, they will have reached a size where pumping salinated water all the way towards their leaves become impractical. Once they have begun this stage, their energy focus will shift towards reproduction and bark reinforcement, entering the "non-secretor" stage. They will grow thick roots and hides reinforced with lignin and suberin, acting as a filter preventing the uptake of salts. This is not perfect barrier, preventing about 80% of sodium salts from being absorbed. While this stage is called non-secretor, it is a bit of a misnomer, as they still will secrete some salts from their bodies, but instead of coating the flora any salts that remain within are excreted into "sacrificial leaves", which are leaves nearing the end of their productivity that will be dropped into the surf.

These adaptations allow tlukvaequaboras to grow in salinities up to 45 parts per thousand (ppt), though they grow optimally in salinities between 2 and 19 ppt.

Roots

The soil where tlukvaequaboras are rooted poses a second challenge for them, as it is severely lacking in oxygen. While the soil of Solpimr are comparatively nutrient poor when measured against the coastal sediment and would normally be more ideal to grow in, the soil is saturated with water, causing oxygen to diffuse through the soil at a rate over 8000 times slower than through the air. This necessitated the development of a way to compensate, which the tlukvaequabora solved in the form of aerial roots called pneumatophores. These pneumatophores typically grow out of the top branch structures, allowing the tlukvaequaboras to receive oxygen out of the air. If their subterranean root systems are large enough to the point that the roots are able to grow above the water's surface, these may also develop aerating pneumatophores that grow up from the main root, as a means of supplementing the supply of oxygen available to the tlukvaequabora.

Their roots will also grow into one another, and old growth forests will share connected root systems. This allows for the flow of nutrients, water, and occasional hormonal signals across these lines of connection, giving each other a bulwark against potential lean times. This trait seems to have come about as a way for older specimen to share nutrients with younger trees, as it is usually the case that the trees that surround an individual are, if not direct descendants, close relatives, helping to perpetuate their genetic lineages.

Reproduction

Life by the ocean has its perks—for tlukvaequabora, proximity to the waves and tides helps not only to provide a constant source of nutrient rich water, but it also provides benefits in regard to reproduction as well.

Like their ancestors, the tlukvaequabora use airborne spores which get caught in the fuzzy leaves of other tlukvaequabora to pollinate them. One pollinated they will grow fuzzy blue berries which are meant to stand out on the flora to attract the attention of herbivores. The spores inside are capable of surviving digestion and will be able to germinate from droppings, facilitating terrestrial distribution. The fruit grow in conjunction with one another, and while they grow throughout the year, with the inter-connected root system allowing for hormonal communication, they are able to produce an abundant amount so as to create specific timed drops, where all fruit will fall within a week period. These drops usually happen twice a year, at the beginning of the rainy season and at the midpoint of the dry season. This timed drop allows for maximum spread of the fruit in the water, and fauna that rely on the fruits take advantage of the plenty.

The watertight skin has, like their ancestor, given the tlukvaequabora's seed's skin and elastic quality, so the berries bounce off the sides of the parent's trunk and the ground several times. The seed within the berry will germinate within a few days if untouched, forming into a purple puff on the forest floor. The puff will grow in size, from a centimeter width to a diameter of a meter, for about 3 years. Then the puff will begin forming a grey-purple woody stem, reaching a height of one meter in a year. It will then continue to lengthen and thicken its stem over the next 10 years until it looks like its ancestor the fuzzpalm. After reaching 5 meters in height, new purple puffs sprout on the stem, which quickly grow with the whole flora to form "sibling puffs"; the first group of siblings is 2–3. After 10 more years of growth, all the puffs mature and begin producing and accepting spores; puff stalks will enter the spore phase for 3–4 months, after which they will resort to growing new berries from the spore they themselves received during this time. This process will continue, with more sibling puffs sprouting from the puff stem junction, maturing, and producing spores and berries, until the flora has grown 10-14 puff stalks; stalks can share the genetic material collected from any one sibling, ensuing a multitude of berries is in stock.

If they are not eaten, the tlukvaequabora have another method for spreading, using the ocean currents. Tlukvaequabora spores are viviparous, beginning their germination process while the fruit is still attached to the parent tlukvaequabora. Once germinated, the sporeling grows within the fruit to form a propagule which is already capable of preforming photosynthesis, and the fruit will drop from the parent. Once a fruit reaches this point it is generally considered "over-ripe" by most herbivores, as it will begin producing acids such as oxalic acid, giving the fruit a sour taste, discouraging ingestion. The gases produced by the fruit beginning decomposition, when combined with the water-tight skins of the fruit, make them exceptionally buoyant, allowing them to float out into the coastal water. Their pollination season is in the spring to take advantage of the calmer climate, while their fruiting season is in the fall, timing the drop of the fruits to coincide with the storm season, allowing for maximum spread of the fruit.

The mature propagule then drops into the water, which can transport it great distances. Propagules can survive desiccation and remain dormant for over a year before arriving in a suitable environment. Once a propagule is ready to root, its density changes so the elongated shape now floats vertically rather than horizontally. In this position, it is more likely to lodge in the mud and root. If it does not root, it can alter its density and drift again in search of more favorable conditions.

Dispersal and Range

Map of the range of tlukvaequabora in Week 24

The large scale spread of tlukvaequabora to all tropical and temperate waters of Barlowe are thanks to three factors: currents, tropical storms, and the tamshrews. Their waterproof fruit allow for the spores to be carries to distant shores, establishing founding populations that attract herbivores and tamshrews to the area.

Tamshrews are a particularly vital group of organisms with regards to the spread and success of the tlukvaequabora While these can be a detriment to some of the younger trees, as the marine tamows and tamjacks in particular do fell younger tlukvaequabora for use in their floating nests, they provide a means of the fruits to disperse, as they horde berries as a means of cultivating future stocks of building materials.

The typical method for the spread of the tlukvaequabora into the coastal waters begins with storm surges. Larger old-growth specimen would typically get felled in these storms and get carried out further into the water. Thought the tlukvaequabora is a rather large organism, they are surprisingly buoyant, as the large stores of freshwater in their trunks and tissue give them a lower density, especially if one has died prior to being felled and has already begun decomposing internally. Currents would occasionally allow for these decomposing masses to end up in shallower sandbank areas, which would allow for a perch for young seedlings to use as a nurse log, allowing them to gain a foothold in the area. If the nurse log was large enough, it could provide enough of a perch and nutrients to allow a few founding trees to grow large enough to plant into the sediment, which provide an anchor for further sediments to deposit against. Over time, these can build upon each other, allowing for the formation of "mangrove-reefs" that provide an oasis for terrestrial and aerial species.

The oldest mangroves are around the northern shores of the Solpimr and southern Ovi islands. In these old growth areas, they can grow up to a 1.5 km offshore, though there are many pockets of mangrove-reef islets off in the coastal waters. These islets formed thanks to the relative shallow waters of the Clayren-Wolfgang coastal interchange areas, with various sandbars and reef pockets dotting along the seabed. These shoals are the remains of once higher elevated sections of Barlowe, though weathering has sunk much, it has left enough near the surface to allow tlukvaequabora to establish themselves and stabilize the soil.

Ecology

Terrestrial Environments

As they are a descendant of the fuzzbora, they have facilitated the dispersal of all bora communal species. These include the twinkboras, marbloras, and larandboras, which have spread to all environments shared by the tlukvaequabora and through contact have begun to live on other closely related fuzzpalm relatives, including the tlukvaequabora's direct ancestor the fuzzpalm and their cousin the penumbra fuzzpalm. Feeding on this abundant food source is species like the stowaway harmblesses and the borinvermees, which have similarly spread to all environments. These are in turn preyed upon by the bora scuttlers, but due to being relatively poorly adapted to terrestrial environments, they have been restricted to the humid, tropical regions in the range.

In addition to these species, the introduction to the Penumbra island has allowed for the dispersal of tamhooks from their original habitat out into the water. With the Tlukvaequabora being a virtually identical plant and having little need to protect themselves after the flora have reached maturity, the tamhook has begun in the assistance in the spread of the tlukvaequabora seeds, as the tamhooks will regularly feed on their fruit when they are in season, helping to spread the seeds. The tamhooks nimble body-form allows them to easily make their homes in the branches, though the occasionally high salt content on the surface of the branches can lead to irritation and sometimes dehydration as a result of grooming methods. They have not spread everywhere, but can be found in the coastal areas surrounding the Hydro Tropical Coast, spreading to the interior of the Putspooza Tropical Rainforest and some headway into the central eastern regions of the Barlowe rainforest, though they have remained localized to that region and have not spread more throughout Barlowe, but small populations have established themselves in the western tropical regions of Dixon.

The phlice and the snapperbeak hookphlyer have similarly spread, feeding on the bora scuttlers primarily, but this spread has opened up the opportunity of the phlice to come into contact with other tamshrew species, allowing them to have a more readily available food source outside of the regions the bora scuttlers have spread to, such as the tamjacks, marine tamows, and tamhooks. This is a rare occurrence, as they typically will stick to their normal food sources.

Tamkor, while readily eating tlukvaequabora much in the way of their ancestors, have not proliferated far beyond the shores of Solpimr due to their large size as adults. The old growth has allowed them to reach Ovi island and the mainland of Barlowe proper, but have not spread farther.

The tlukvaequabora's relationship with the tamshrews as provided a boon to their fuzzpalm relatives. The tamshrew propensity to stockpile seeds and fruit to allow for future stock of nesting materials have allowed for the spread of the other fuzzpalms to not only the mainlands, but to the surrounding islands. The penumbra fuzzpalm have spread to rainforests of Putspoozoa island, mainland Barlowe, and even to the tropical rainforests of Dixon, carried over by the spread of the tamhooks. Their distant ancestor, the fuzzpalm also benefited, seeing their populations spread to all of the beaches of the northern island of Barlowe such as Abello, Ittiz, Nuke, and Time, as well as the northern temperate beaches of Barlowe such as Anguan and Oz.

The spread of species out of Jaydoh island has also occurred due to the spread of the tlukvaequabora, but this is a significantly rarer occurrence. Due to the isolation of the island, spread out of the area did not occur for thousands of years until after their introduction, as the spread was accomplished solely through rafting dispersal events. During large storms, entire sections of forest can end up dislodged from the seabed and float out to sea, taking any organisms clinging to them as collateral. One such organism is the beach cheekhorn which is a regular sight in the upper canopies of these trees, as their strong instinct for climbing, the coating of salt acting as a good source of electrolites, and the berries have made the tluvkvaequabora ideal places for them to congregate. This has allowed not only the beach cheekhorns to spread to the beaches of Barlowe and Dixon, but the kack tower as well, as the nuts produced by the kack tower regularly end up lodged in beach cheekhorns' digestive system, and spread to wherever their herds end up.

Aquatic Environments

The effect on the coastal water of Barlowe and Dixon cannot go without mention as well. Their ability to create stable seabeds have provided a spurce of purchase for various flora species, allowing them the chance to proliferate. Lacrimuck have spread throughout the temperate waters of Barlowe, amphibious flashkelp have spread to all tropical waters of Barlowe and even to Ninth, and carnosprawl are now a common sight in all coastal and marsh waters of Dixon

The polychrome flagthroat found a boon in the new source of food and have begun to feed on the various communal species and fruits available. A small pocket have even found their way to Raq following the biyearly dropped fruit as they float out to sea.